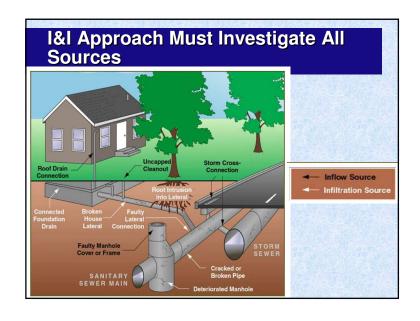


Infiltration & Inflow Investigation Achieves an "As Tight As Possible" Collection System

Presented to Council Committee-of-the-Whole Meeting Bettendorf, Iowa June 15, 2009

Agenda

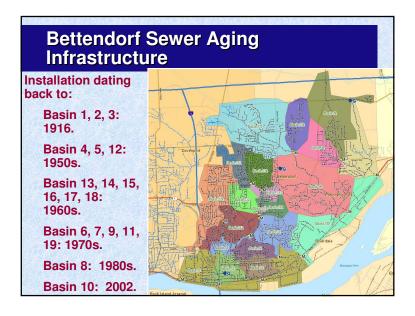

- Infiltration and Inflow (I&I) Defined.
- Identify and Quantify I&I Sources.
- Innovative and Cost-Efficient Testing Methods.
- Recommend Practical Rehabilitative Solutions.

Sanitary Sewer System Conveys Hydraulic Flows

- Wastewater
 - Residential, commercial, industrial customer discharges that must be collected and treated.
- Infiltration
 - Clear groundwater that enters through cracks and/or leaks in the system that occurs continuously.
- Inflow
 - Storm water and snow melt runoff that enters through direct connections to the system that occurs during wet weather.

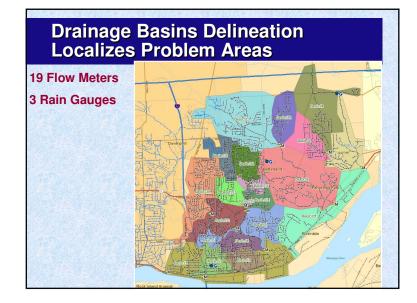
Excess I&I Leads to Environmental Problems

- Joint Use Water Pollution Control Plant
 - Primary treatment hydraulic capacity = 66 mgd.
 - Joint Use Interceptor capacity = 175 ± mgd.
 - Sluice gate closed to prevent lift station flooding.
- Backup in Interceptor
 - Excess I&I in both Bettendorf and Davenport.



I&I Study Approach Uses Innovative and Cost-Efficient Approaches

- Field Investigations. Walk Sewers.
- Flow Monitoring.
- Manhole Inspections.
- · Smoke Testing.
- · Dye Testing.
- · Building Inspections.
- Televising Inspections of Main Sewers.
- Televising Inspections of House Laterals.

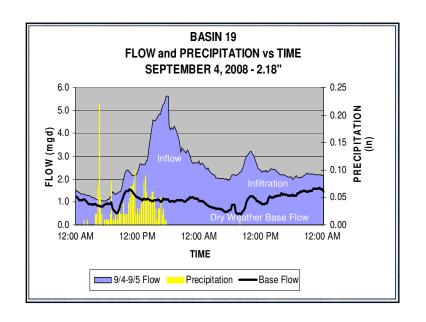

Bettendorf Sewer Components Give Magnitude of Effort

- 980,000 linear feet (185 miles) of sewers.
- Size from 6" to 72".
- 4,200 manholes.
- · 3 lift stations.
- Pipe Materials: Vitrified Clay, Reinforced Concrete, Ductile Iron.

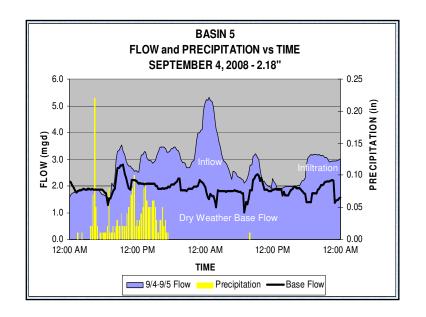
Flow Monitoring Evaluates Existing Sewer System

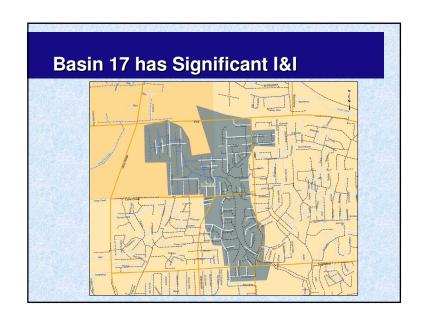
- Determines flow per basin monitored.
 - Base Sanitary Flow.
 - Infiltration Locations and Quantities.
 - Inflow Locations and Quantities.
- · Does not tell cause.

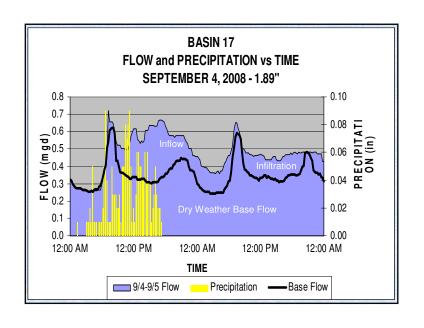
Rainfall Events Result in Wet Weather Flows

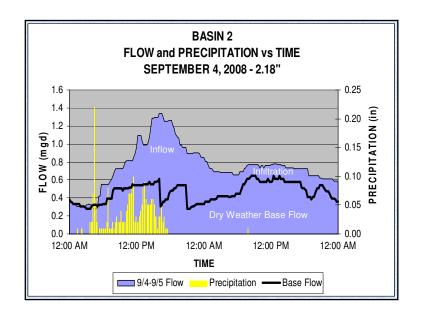

August 27 – October 2, 2008

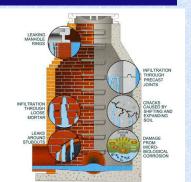
	9/4/08	9/8/08	9/13/08	9/29/08
	(16 hr)	(8 hr)	(3 day)	(90 min)
City Hall	2.18"	0.70"	3.95"	0.69"
Public Works	1.89"	0.66"	3.42"	0.51"
Lift Station (Forest Grove Rd)	1.45"	0.56"	2.90"	0.51"


Flow Monitoring Results Analyzed Using September 4th Storm


- Bettendorf Base Flow = 6.8 mgd
- Total I&I = 11.2 mgd
- Total Wet Weather = 18.0 mgd
- Highest I&I Occurred in Basin 19, 5, 17, and 2.
- Highlights areas for further investigation.



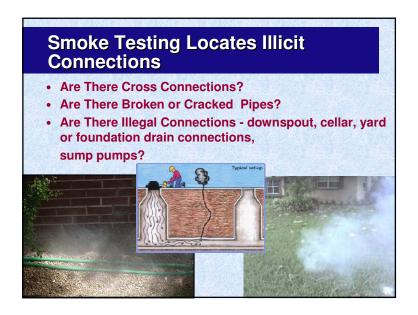


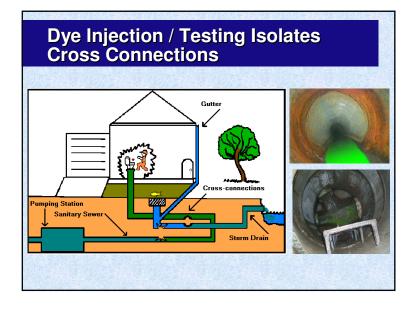


Manhole Inspections Identify Significant I/I Sources

- What is Manhole Condition?
- Does MH Lid have Openings?
- Does Manhole Lid Get Flooded?
- Are Adjustment Rings Deteriorated?
- Are Frame and Cover Sunken?
- Any Obstructions or Root Intrusion?
- · Any Evidence of Leakage?
- · Any Cross-Connections?

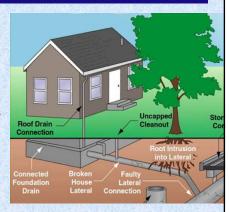
Manhole Inspections Identified Sources of I&I


		Defects				
Basin	MHs Inspected	Lid	Frame Seal	Wall	Bench Trough	Pipe Seals
19	146	92	24	95	45	20/46
5	274	216	16	59	22	26/79
17	145	107	20	47	32	44/85
2	170	139	58	90	65	8/9
Total	735	554	118	291	164	98/219


Manhole Inspections Quantified Inflow into Manholes

Basin	Inflow Measured During Flow Monitoring (gpd)	Inflow Identified during Manhole Inspections (gpd)	% Inflow Identified	
19	2,389,000	106,997		
5	1,460,000	284,427	19%	
17	194,000	164,105	85%	
2	519,000	380,759	73%	
Total	4,562,000	936,288	21%	

I&I Study Approach Uses Innovative and Cost-Efficient Approaches


- Field Investigations. Walk Sewers.
- Flow Monitoring.
- Manhole Inspections.
- Smoke Testing.
- · Dye Testing.
- . Building Inspections.
- Televising Inspections of Main Sewers.
- Televising Inspections of House Laterals.

- Are Downspouts Connected to Service Lateral?
- Are Sump Pumps Connected to Service Lateral?
- Are Cleanout Caps Flooding?

Televising Captures Visual Conditions in Sewer Main

- Assessment Includes:
 - Root Intrusion.
 - Cracks (Longitudinal, Circumferential, etc...).
 - Offset Joints.
 - Cavity in Pipes.
 - Misaligned Service Connections.
 - Vertical Depression in Pipeline.
 - Flow Obstructions.
 - Grease Buildup.

Televising Main Sewers Locates Problem Areas

- What are Actual Condition of Sewers?
- What is Extent of Problem Areas?
- What is Location of Problem Areas?

Televising Lateral Sewers Gives Property Owner Understanding

- Is Lateral Cracked?
- Is Lateral Near Collapse?
- Does Lateral Have Bottom?
- Are Tree Roots Protruding into Lateral?
- Are Joints Offset?
- Does Pipe Have a Cavity?
- Are Service Connections Misaligned?
- · Is the Flow Obstructed?
- Is Grease Build Up?

I&I Investigation Results in Cost Effective Solutions

- Identify Possible Solutions for Each I&I Problem.
- Analyze Each Practical Alternative I&I Solution.
- Recommend Practical, Cost-Effective Solutions.
- Use Most Efficient Expenditure for Quantity of I&I Removed.
- May Use Different Solutions for Different Problems.

Inflow Repairs Remove Surface Water

- Replace Manhole Lids.
- Frame And Cover Height Adjustment.
- Remove Storm Water Connections.
- Disconnect Downspouts.
- Disconnect Sump Pump Discharges.
- Disconnect Footing Drains.

Further Investigation & Manhole Rehabilitation - Basin 2, 5, 17, 19 Year 2009 · Additional Investigation - Basin 2, 5, 17, 19 ▶ Additional Flow Monitoring - Basin 19 ▶ Smoke Testing ▶ Locate & Inspect Remaining Manholes Building Inspections Total For Additional Testing \$175,000 Testing Budget Remaining \$ 35,000 \$140,000 Additional Estimated Cost Estimated Cost for Manhole Rehabilitation **Design & Construction** \$750,000 Total Estimated 2009 Cost \$890,000

Continue Investigation in Other Basins

Year 2010

- Investigation Basin 1, 3, 4, 7, 12, 14
 - ► Manhole Inspections
 - **▶ Smoke Testing**
 - **▶ Building Inspections**
 - Total Estimated Cost

\$200,000

- Estimated Cost for Manhole Rehabilitation
 Design & Construction \$750,000
- TOTAL Estimated 2010 Cost

\$950,000